ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "b128d675-3c93-4ba1-9e30-f5df990e45d9"}, "_deposit": {"created_by": 3, "id": "3052", "owners": [3], "pid": {"revision_id": 0, "type": "depid", "value": "3052"}, "status": "published"}, "_oai": {"id": "oai:repository.ninjal.ac.jp:00003052", "sets": ["441", "444"]}, "author_link": ["10294", "10296", "10297", "10299", "10295", "10298", "10293"], "item_10001_biblio_info_7": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2019-09", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "908", "bibliographicPageStart": "904", "bibliographic_titles": [{}, {"bibliographic_title": "Proceedings of Interspeech 2019", "bibliographic_titleLang": "en"}]}]}, "item_10001_description_19": {"attribute_name": "フォーマット", "attribute_value_mlt": [{"subitem_description": "application/pdf", "subitem_description_type": "Other"}]}, "item_10001_description_25": {"attribute_name": "著者所属(英)", "attribute_value_mlt": [{"subitem_description": "Chiba Institute of Technology", "subitem_description_type": "Other"}, {"subitem_description": "Chiba Institute of Technology", "subitem_description_type": "Other"}, {"subitem_description": "Chiba Institute of Technology", "subitem_description_type": "Other"}, {"subitem_description": "Chiba Institute of Technology", "subitem_description_type": "Other"}, {"subitem_description": "Konan University", "subitem_description_type": "Other"}, {"subitem_description": "National Institute for Japanese Language and Linguistics", "subitem_description_type": "Other"}, {"subitem_description": "National Institute for Japanese Language and Linguistics", "subitem_description_type": "Other"}]}, "item_10001_description_26": {"attribute_name": "抄録(英)", "attribute_value_mlt": [{"subitem_description": "Real-time MRI can be used to obtain videos that describe articulatory movements during running speech. For detailed analysis based on a large number of video frames, it is necessary to extract the contours of speech organs, such as the tongue, semi-automatically. The present study attempted to extract the contours of speech organs from videos using a machine learning method. First, an expert operator manually extracted the contours from the frames of a video to build training data sets. The learning operators, or learners, then extracted the contours from each frame of the video. Finally, the errors representing the geometrical distance between the extracted contours and the ground truth, which were the contours excluded from the training data sets, were examined. The results showed that the contours extracted using machine learning were closer to the ground truth than the contours traced by other expert and non-expert operators. In addition, using the same learners, the contours were extracted from other naive videos obtained during different speech tasks of the same subject. As a result, the errors in those videos were similar to those in the video in which the learners were trained.", "subitem_description_type": "Other"}]}, "item_10001_identifier_registration": {"attribute_name": "ID登録", "attribute_value_mlt": [{"subitem_identifier_reg_text": "10.15084/00003036", "subitem_identifier_reg_type": "JaLC"}]}, "item_10001_source_id_9": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1990-9772", "subitem_source_identifier_type": "ISSN"}]}, "item_10001_version_type_20": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Takemoto, Hironori", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10293", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Goto, Tsubasa", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10294", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Hagihara, Yuya", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10295", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Hamanaka, Sayaka", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10296", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Kitamura, Tatsuya", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10297", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Nota, Yukiko", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10298", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Maekawa, Kikuo", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "10299", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2020-10-06"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "interspeech_2019_904.pdf", "filesize": [{"value": "1.2 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 1200000.0, "url": {"label": "interspeech_2019_904.pdf", "url": "https://repository.ninjal.ac.jp/record/3052/files/interspeech_2019_904.pdf"}, "version_id": "719c3970-edfa-4ed1-8c46-f36c71f2c657"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "real-time MRI", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "machine learning", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "speech organs", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}, {"subitem_subject": "articulatory movements", "subitem_subject_language": "en", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Speech organ contour extraction using real-time MRI and machine learning method", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Speech organ contour extraction using real-time MRI and machine learning method", "subitem_title_language": "en"}]}, "item_type_id": "10001", "owner": "3", "path": ["441", "444"], "permalink_uri": "https://doi.org/10.15084/00003036", "pubdate": {"attribute_name": "公開日", "attribute_value": "2020-10-09"}, "publish_date": "2020-10-09", "publish_status": "0", "recid": "3052", "relation": {}, "relation_version_is_last": true, "title": ["Speech organ contour extraction using real-time MRI and machine learning method"], "weko_shared_id": 3}
  1. その他個人著作物
  2. 前川 喜久雄
  1. その他個人著作物
  2. 能田 由紀子

Speech organ contour extraction using real-time MRI and machine learning method

https://doi.org/10.15084/00003036
https://doi.org/10.15084/00003036
92fea03b-a911-4e69-9820-18adcc09f22f
名前 / ファイル ライセンス アクション
interspeech_2019_904.pdf interspeech_2019_904.pdf (1.2 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2020-10-09
タイトル
言語 en
タイトル Speech organ contour extraction using real-time MRI and machine learning method
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 real-time MRI
キーワード
言語 en
主題Scheme Other
主題 machine learning
キーワード
言語 en
主題Scheme Other
主題 speech organs
キーワード
言語 en
主題Scheme Other
主題 articulatory movements
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
ID登録
ID登録 10.15084/00003036
ID登録タイプ JaLC
著者 Takemoto, Hironori

× Takemoto, Hironori

WEKO 10293

en Takemoto, Hironori

Search repository
Goto, Tsubasa

× Goto, Tsubasa

WEKO 10294

en Goto, Tsubasa

Search repository
Hagihara, Yuya

× Hagihara, Yuya

WEKO 10295

en Hagihara, Yuya

Search repository
Hamanaka, Sayaka

× Hamanaka, Sayaka

WEKO 10296

en Hamanaka, Sayaka

Search repository
Kitamura, Tatsuya

× Kitamura, Tatsuya

WEKO 10297

en Kitamura, Tatsuya

Search repository
Nota, Yukiko

× Nota, Yukiko

WEKO 10298

en Nota, Yukiko

Search repository
Maekawa, Kikuo

× Maekawa, Kikuo

WEKO 10299

en Maekawa, Kikuo

Search repository
著者所属(英)
内容記述タイプ Other
内容記述 Chiba Institute of Technology
著者所属(英)
内容記述タイプ Other
内容記述 Chiba Institute of Technology
著者所属(英)
内容記述タイプ Other
内容記述 Chiba Institute of Technology
著者所属(英)
内容記述タイプ Other
内容記述 Chiba Institute of Technology
著者所属(英)
内容記述タイプ Other
内容記述 Konan University
著者所属(英)
内容記述タイプ Other
内容記述 National Institute for Japanese Language and Linguistics
著者所属(英)
内容記述タイプ Other
内容記述 National Institute for Japanese Language and Linguistics
抄録(英)
内容記述タイプ Other
内容記述 Real-time MRI can be used to obtain videos that describe articulatory movements during running speech. For detailed analysis based on a large number of video frames, it is necessary to extract the contours of speech organs, such as the tongue, semi-automatically. The present study attempted to extract the contours of speech organs from videos using a machine learning method. First, an expert operator manually extracted the contours from the frames of a video to build training data sets. The learning operators, or learners, then extracted the contours from each frame of the video. Finally, the errors representing the geometrical distance between the extracted contours and the ground truth, which were the contours excluded from the training data sets, were examined. The results showed that the contours extracted using machine learning were closer to the ground truth than the contours traced by other expert and non-expert operators. In addition, using the same learners, the contours were extracted from other naive videos obtained during different speech tasks of the same subject. As a result, the errors in those videos were similar to those in the video in which the learners were trained.
書誌情報 en : Proceedings of Interspeech 2019

p. 904-908, 発行日 2019-09
ISSN
収録物識別子タイプ ISSN
収録物識別子 1990-9772
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 14:54:01.298264
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3