ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. Proceedings of the LREC 2018 Special Speech Sessions

Construction of a corpus of elderly Japanese speech for analysis and recognition

https://doi.org/10.15084/00001911
https://doi.org/10.15084/00001911
725529e2-b8b6-463a-bc7f-0e07da02679c
名前 / ファイル ライセンス アクション
lrec2018sss_kitaoka.pdf lrec2018sss_kitaoka.pdf (209.3 kB)
Item type 会議発表論文 / Conference Paper(1)
公開日 2019-03-06
タイトル
タイトル Construction of a corpus of elderly Japanese speech for analysis and recognition
言語 en
言語
言語 eng
キーワード
言語 en
主題Scheme Other
主題 elderly speech corpus
キーワード
言語 en
主題Scheme Other
主題 nursing home care
キーワード
言語 en
主題Scheme Other
主題 speech corpus construction
キーワード
言語 en
主題Scheme Other
主題 speech recognition
キーワード
言語 en
主題Scheme Other
主題 companion robots
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_5794
資源タイプ conference paper
ID登録
ID登録 10.15084/00001911
ID登録タイプ JaLC
著者 Kitaoka, Norihide

× Kitaoka, Norihide

WEKO 6931

en Kitaoka, Norihide

Search repository
Iribe, Yurie

× Iribe, Yurie

WEKO 6932

en Iribe, Yurie

Search repository
Nishizaki, Hiromitsu

× Nishizaki, Hiromitsu

WEKO 6933

en Nishizaki, Hiromitsu

Search repository
著者所属(英)
内容記述タイプ Other
内容記述 Tokushima University
著者所属(英)
内容記述タイプ Other
内容記述 Aichi Prefectural University
著者所属(英)
内容記述タイプ Other
内容記述 University of Yamanashi
会議概要(会議名, 開催地, 会期, 主催者等)
内容記述タイプ Other
内容記述 LREC 2018 Special Speech Sessions "Speech Resources Collection in Real-World Situations"; Phoenix Seagaia Conference Center, Miyazaki; 2018-05-09
抄録(英)
内容記述タイプ Other
内容記述 We have constructed a new speech data corpus using the utterances of 100 elderly Japanese people, in order to improve the accuracy of automatic recognition of the speech of older people. Humanoid robots are being developed for use in elder care nursing facilities because interaction with such robots is expected to help clients maintain their cognitive abilities, as well as provide them with companionship. In order for these robots to interact with the elderly through spoken dialogue, a high performance speech recognition system for the speech of elderly people is needed. To develop such a system, we recorded speech uttered by 100 elderly Japanese who had an average age of 77.2, most of them living in nursing homes. Another corpus of elderly Japanese speech called S-JNAS (Seniors-Japanese Newspaper Article Sentences) has been developed previously, but the average age of the participants was 67.6. Since the target age for nursing home care is around 75, much higher than that of most of the S-JNAS samples, we felt a more representative corpus was needed. In this study we compare the performance of our new corpus with both the Japanese read speech corpus JNAS (Japanese Newspaper Article Speech), which consists of adult speech, and with the S-JNAS, the senior version of JNAS, by conducting speech recognition experiments. Data from the JNAS, S-JNAS and CSJ (Corpus of Spontaneous Japanese) was used as training data for the acoustic models, respectively. We then used our new corpus to adapt the acoustic models to elderly speech, but we were unable to achieve sufficient performance when attempting to recognize elderly speech. Based on our experimental results, we believe that development of a corpus of spontaneous elderly speech and/or special acoustic adaptation methods will likely be necessary to improve the recognition performance of dialog systems for the elderly.
書誌情報 en : Proceedings of the LREC 2018 Special Speech Sessions

p. 14-20, 発行日 2018-05-09
フォーマット
内容記述タイプ Other
内容記述 application/pdf
著者版フラグ
出版タイプ VoR
出版タイプResource http://purl.org/coar/version/c_970fb48d4fbd8a85
出版者
出版者 Center for Corpus Development, National Institute for Japanese Language and Linguistics
戻る
0
views
See details
Views

Versions

Ver.1 2023-05-15 15:12:08.241644
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR 2.0
  • OAI-PMH JPCOAR 1.0
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3