<table>
<thead>
<tr>
<th>番号</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>番号</td>
</tr>
<tr>
<td>2</td>
<td>項目</td>
</tr>
<tr>
<td>3</td>
<td>番号</td>
</tr>
<tr>
<td>4</td>
<td>項目</td>
</tr>
</tbody>
</table>
Rendaku Across Duplicate Moras

Mark IRWIN
Yamagata University / Project Collaborator, NINJAL

Abstract
Persistent claims have been made in the rendaku literature concerning the occurrence of two identical, successive moras. When two identical fricative moras occur in succession in tautomorphemic position (e.g. kare+susuki ‘withered plume grass’), it is claimed rendaku is blocked. Further, if any two identical moras occur in succession in heteromorphemic position (e.g. kizu+tukeru ‘scar, wound’), then it is claimed rendaku is severely restricted. Neither of these claims has been corroborated by statistical evidence and must be placed in the category of ‘linguistic urban myth’. In this paper, I will demonstrate by means of a large database that these claims are manifestly false and must be rejected.*

Key words: rendaku, mora, dissimilation, rendaku database, linguistic urban myths

1. Preliminaries
Rendaku, or sequential voicing, is a well-known morphophonological phenomenon found in Japanese, whereby the initial voiceless obstruent (k, s, t, h)\(^1\) of a non-initial element (E\(_2\)) in a compound may be voiced,\(^2\) as in:

(1) \(\text{k} \sim \text{g}: \ usu + \text{kurai} \rightarrow \text{usu.gurai} \)
thin, faint dark dim, gloomy

A number of different factors have been put forward claiming to block, dampen, constrain, or otherwise restrict rendaku. The most important of these—and the only one that deserves the appellation ‘law’—is Motoori-Lyman’s Law (Motoori 1822; Lyman 1894), whereby rendaku is blocked (though see Martin 1987: 115; Suzuki 2005) if E\(_2\) contains a voiced obstruent (g, z, d, b):

(2) \(\text{k} \sim \text{k}: \ usu + \text{kuragari} \rightarrow \text{usu.kuragari} \)
thin, faint darkness twilight, dusk

Other major restricting factors include:

* This paper is part of the NINJAL ‘Japanese Lexicon: A Rendaku Encyclopaedia’ collaborative research project (project leader: Prof. Timothy Vance).

\(^1\) In this paper, I employ a conservative phonemic analysis. Although this is not an analysis I believe to be appropriate for Japanese in general (Irwin 2011: 71–74), the reason for its adoption will become clear below.

\(^2\) Henceforth, E\(_1\) will be used as an abbreviation for the initial element. In spite of my use of a subscript 2 in E\(_2\), the element undergoing rendaku does not have to be the second in a compound, merely non-initial (E\(_2\) is thus shorthand for E\(_2\)). Third, or even fourth, elements in longer compounds may undergo rendaku: e.g. \(\text{buq+komi+zuris+bari} ‘ledger fishing hook’\). That rendaku occurs in the ‘second element’ of compounds (and therefore, by implication, in second elements only) is an error found distressingly frequently in the literature.
coordinate or dvandva compounds: Martin (1952), Okumura (1955), Kindaichi (1976), Vance (2007a) *inter alia*. Reduplicated coordinate compounds show no constraints on rendaku (Martin 1952: 49; Oyakawa 1989: 10–17), provided they are not verbs (Itô & Mester in press).

m < original *b*: rendaku does not occur when a word-internal *m* derives from an earlier *b*: e.g. *himo* ‘string’, *kasumi* ‘crown’, *kemuri* ‘smoke’, *koomori* ‘bat (animal)’, etc. See Nakagawa (1966), Martin (1987: 31–32).

For more detailed general discussion of these factors see Okumura (1980), Vance (1987: 133–148; in press), Labrune (2006: 116–127, 2012: 112–128) or Irwin (2012: 28–29). What is of great interest for rendaku as a morphophonological phenomenon, however, is its unsystematicity. Despite the fact that none of the restricting factors outlined in (3) apply, *E₂* may still fail to voice, even though it ‘should’:

\[(4) \ k \sim \ k:\ \textit{usu} + \textit{kuti} \rightarrow \textit{usu.kuti}\]

thin, faint mouth, flavour delicately-flavoured

In Japanese the mora (μ) ‘functions as the unit of length… [and] the length of a phrase [is] roughly proportional to the number of moras it contains’ (McCawley 1968: 131). There are three types of mora:

\[(5)\]

(i) *(C)/(G)V structures, where the optional onset *C* is a consonant, the optional glide *G* an approximant, and *V* a vowel

(ii) the mora nasal *N*

(iii) the mora obstruent *Q*

With a very small number of exceptions restricted to particles (*qte* ‘quotative particle’) and foreign names (*njamena* ‘Ndjamena (capital of Chad)’), types (ii) and (iii) do not occur word-initially in the standard language. Since this paper concerns itself with rendaku, an allomorphy restricted to element-initial moras, the duplicate moras treated here belong to type (i) structures only.

This paper seeks to debunk claims in the literature regarding the interaction of rendaku and these duplicate moras. Such claims fall into two camps: tautomorphemic duplicate moras (e.g. compounds of the form μ(...) + μμ(...), where the first two moras of *E₂* are identical) and heteromorphemic duplicate moras (e.g. compounds of the form (...)μ + μ(...), where the final mora of *E₁* and the initial mora of *E₂* are identical). I treat the first of these in §3, the second in §4. Before embarking on these analyses, however, I outline the source for the empirical data employed to test these claims: the rendaku database.

2. Rendaku database

The rendaku database (Irwin & Miyashita 2013) is a database of all rendaku candidate compounds collated from two major dictionaries, Shinmura (2008) and Watanabe et al. (2008), com-
prizing 34,201 entries. As noted in §1, a number of major factors, listed in (3), restrict rendaku. These factors operate in an overwhelmingly systematic fashion. Since I aim to demonstrate the lack of any significant statistical trace left by the interaction between rendaku and duplicate moras in an environment devoid of systematicity (what Irwin (in press) calls ‘chaotic’), those compounds to which apply one or more of these major restricting factors listed in (3) are excised. Also excised from the rendaku database are the three minor, yet also systematic, factors listed in (6), as well as two types of entry presenting idiosyncratic difficulties, listed in (7).

(6) **abbreviated E₂**: The very few abbreviated E₂ overwhelmingly resist rendaku: e.g. \textit{seseri < seseri+tyoo ‘skipper (butterfly)’ in \textit{itimonzi+seseri ‘Parnara guttata’, or sasi < sasimi ‘sashimi’ in \textit{bugu+sasi ‘blowfish sashimi’}}.

E₂ suru compounds: These are restricted to cases where E₁ is a Sino-Japanese mononom (i.e. written with one sinograph). It has been well established that these undergo rendaku in an almost completely systematic fashion, governed by the phonology of E₁ (Lyman 1894: 6; Martin 1952: 49–52; Okumura 1952, 1955, 1964).

potential E₂ suffixes: What constitutes an affix in Japanese is a problem with no easy resolution (see, for example, the discussion in Irwin 2012: 32–35), but compounds where E₂ is potentially a suffix have been excised: e.g. -\textit{sama} (as a term of address only), -\textit{kata} (in the sense of ‘way, means of’ only), -\textit{katai} (in the sense of ‘difficult to do’ only). These show an acute tendency either towards (-\textit{katai}) or away from (-\textit{kata}, -\textit{sama}) rendaku.

(7) **anthroponyms and toponyms**: A number of anthroponyms and toponyms are written in \textit{ateji} (Chinese characters employed for their phonetic rather than semantic value), while not a few toponyms in northern Tōhoku and Hokkaidō are borrowings from Ainu. In addition, cross-linguistically, names frequently exhibit aberrant behaviour.

E₂ with unbound voiced allomorphs: These include \textit{kawa ~ gawa ‘side’ or sama ~ zama ‘state’}. The voiced allomorph sometimes possesses a negative meaning. When the voiced allomorph of such a morpheme appears as an E₂, it is impossible to determine whether we are dealing with this voiced allomorph itself or with the rendaku form of the voiceless allomorph.

When all applicable ((3) + (6) + (7)) compounds are removed, there remains a residue of 27,900 compounds. This will henceforth be referred to as the DATABASE.

The mean rendaku rates (MRRs) for this DATABASE, calculated by E₂ part of speech, are

3 Other minor systematic factors, on whose validity the jury is still largely out, include semantics (Masuda 1979; Irwin in press), element length and prosody (Rosen 2003; Irwin 2009; Tamaoka et al. 2009), prefixes (Nakagawa 1966; Ito 2008; Irwin 2012), as well as, possibly, E₁ vocabulary stratum (Ihara & Murata 2006; Ihara et al. 2009; Tamaoka et al. 2009), frequency (van de Weijer et al. 2013) and accent (Kida 1979; Unger 2000; Yamaguchi 2011; Yamaguchi & Tanaka 2013; \textit{inter alia}). Rendaku database entries subject to any of these factors have not been excised. In addition, dialect borrowing cannot be discounted (Tamaoka & Ikeda 2010; Ōta 2010, 2011; Vance, Miyashita & Irwin in press).

4 The MRR for a given compound is calculated by assigning a score of 1 if it listed in a DATABASE dictionary in rendaku form, 0 if it listed in a DATABASE dictionary without rendaku, and 0.5 if it is listed with both forms in the same DATABASE dictionary. The compound’s total score is then divided by its number of dictionary appearances (max: 2). A score of 0.5 can thus have two sources: a given compound is listed in both dictionaries, one with and one without rendaku; or a given compound is listed in only one dictionary but in both forms.
shown in Fig. 1. The higher the MRR, the more prone to rendaku a given part of speech is. As pointed out by Okumura (1955), Vance (2005a) and others, rendaku is heavily dampened when E_2 is a verb. The 2,899 verbs in the database have an MRR of .184, while MRRs for other parts of speech are broadly similar, ranging from .639 for adjectives to .840 for deadjectival nouns. Since both adjectives and deadjectivals comprise only a small proportion of the database (together, only 2.2%), I will lump them together with the more frequent deverbals and nouns to create a 'non-verb' category with 25,001 entries and an MRR of .768. It is these two standard MRRs, .184 for verbs and .768 for non-verbs, against which candidate database compounds containing tautomorphic and heteromorphemic duplicate moras will be measured.

Since the E_2-initial mora figures in the analyses of both tautomorphic and heteromorphemic duplicate moras, it is worthwhile looking briefly at its MRR distribution. Figs. 2 and 3 show the MRRs of possible E_2-initial moras grouped by full mora (CV structures) and by mora type (C_x and V_x structures), respectively. Data is for non-verbs only. Fig. 2 shows data for 20 full moras, while Fig. 3 limits itself to the 10 major mora types: the four consonant types ($k = ka$ ki ku ke ko, etc.), in bold, and the five vowel types ($a = ka$ sa ta ha, etc.). With the full mora analysis in Fig. 2, we see that ka is by far the most commonly found E_2-initial mora ($n = 4,785$), while the two farthest outliers from the non-verb MRR are both e-type moras: he (.938) and te (.571). With the mora type analysis in Fig. 3, k- and a-type moras occupy a near identical position on the graph, and are by a large margin the two most common mora types ($n = 10,020$ and 10,058, respectively). The highest MRR is exhibited by b-type moras (.835). A one-way ANOVA test was run on the Fig. 2 data: there were no statistically significant differences between group means ($F(19,20) = 1.38$, $p = .24$).

5 In Fig. 2, the 19 database entries whose E_2 begins in kya, nya and syu are omitted due to paucity of data. Similarly, Fig. 3 omits both ky-type and sy-type moras. Both Figs. 2 and 3 thus represent data for 24,982 non-verbs.
3. Tautomorphemic moras

As far as the author is aware, the first claim regarding rendaku and tautomorphemic duplicate moras was made by Satō:
Rendaku does not occur in words where two voiceless fricative syllables succeed each other. This rule means that words beginning with *haha*, *susu*, *hibi* or the like do not undergo rendaku. Satō (1989: 256)

He then goes on to cite the example of *susuki* 薮 ‘plume grass’.

Satō’s (1989) claim is repeated twice in subsequent work by Labrune, although in both cases she notes that *sasa* 竹 ‘bamboo grass’ may undergo rendaku and is thus an exception to Satō’s rule:

Conditions du blocage du rendaku:… lorsque le second composé comporte une syllabe ré-dupliquée dont la consonne initiale est une fricative (Satô 1989).

[Conditions under which rendaku is blocked:…. when the second element contains a reduplicated syllable whose initial consonant is a fricative (Satō 1989).]

Labrune (1999: 124–125)

… selon Satô (1989), il arrive que l’apparition du rendaku soit bloquée lorsque le second composé comporte une succession de deux moras identiques impliquant les fricatives sourdes /h/ ou /s/. Les mots commençant par *haha*, *hibi*, *susu*, etc. ne subiraient donc jamais le rendaku.

[According to Satō (1989), rendaku is blocked when the second element contains two identical moras with the voiceless fricatives /h/ or /s/. Thus, words beginning in *haha*, *hibi*, *susu*, etc. never undergo rendaku.] Labrune (2006: 124)

From the examples cited by Satō, I am presuming he means ‘two identical voiceless fricative syllables’, i.e. he does not intend words such as *susi* ‘sushi’ or *husa* ‘bunch’ to be covered by his ‘rule’. Moreover, since rendaku is frequently blocked in the Sino-Japanese stratum and regularly in the foreign stratum (see (3) for references), I am also presuming Satō intended his ‘rule’ to apply to the native stratum only. Further, tautomorphemic non-light (heavy or superheavy) syllables are relatively rare in the native stratum, still rarer when the field is reduced to rendaku candidate morphemes, and non-existent when further shrunk to rendaku candidate morphemes beginning in two identical ’voiceless fricative syllables’. In other words, since there exist no rendaku candidate morphemes beginning with, for example, *susuu*- or *sin*sin*- where the reduplicated syllable is heavy (bimoraic) or longer, Satō’s ‘syllable’ can only refer to a light syllable. As all light syllables in Japanese are monomoraic, Satō’s ‘syllable’ may be replaced with ‘mora’, as in fact Labrune (2006) does. Satō’s putative rule may thus be reworded, employing the terminology I use in this paper, as:

(8) Rendaku is blocked in compounds where a native stratum \(E_2\) begins in two duplicate voiceless fricative moras

A series of sound changes known collectively as labial lenition (*hagyō tenkō'on* in the Japanese tradition), beginning in Old Japanese and still incomplete, includes the change of intervocalic \(p > f'](\sim β') > w\) (before \(a\)) or \(ø\) (elsewhere) in the native Japanese stratum. Morpheme-internal \(b\) is thus exceptionally highly marked and confined to analogical restorations, dialect borrowings and other unusual, sporadic processes (e.g. *abureru* ‘overflow’, *ahoo* ‘idiot’, *abiru* ‘duck’ and examples in Table 1). The rule in (8) is therefore over-

Of the 1,333 different \(E_2 \) in the database,\(^7\) only 15 (1.1\% of the total) begin in two duplicate voiceless fricative moras, as defined in (8). These appear in 74 compounds (a mere 0.3\% of the database) and are listed in Table 1 below, along with their English gloss, part of speech, the number of compounds in which they appear \((n)\), and their MRR.

Table 1 Mean Rendaku Rates for \(E_2 \) beginning in two duplicate voiceless fricative moras (data from Irwin & Miyashita 2013)

<table>
<thead>
<tr>
<th>CANDIDATE MORPHEME</th>
<th>ENGLISH GLOSS</th>
<th>PART OF SPEECH</th>
<th>(n)</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>sasa 等</td>
<td>bamboo grass</td>
<td>noun</td>
<td>20</td>
<td>.950</td>
</tr>
<tr>
<td>sisi 肉</td>
<td>flesh, meat</td>
<td>noun</td>
<td>6</td>
<td>1.000</td>
</tr>
<tr>
<td>susuki 薮</td>
<td>plume grass (\textit{Miscanthus sinensis})</td>
<td>noun</td>
<td>16</td>
<td>.000</td>
</tr>
<tr>
<td>haha 母</td>
<td>mother</td>
<td>noun</td>
<td>4</td>
<td>.000</td>
</tr>
<tr>
<td>hahaki 帯</td>
<td>broom</td>
<td>noun</td>
<td>2</td>
<td>.375</td>
</tr>
<tr>
<td>huhuki 候</td>
<td>butterbur (\textit{Petasites japonicus})</td>
<td>noun</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>\textbf{ALL NOUNS}</td>
<td></td>
<td></td>
<td>49</td>
<td>.526</td>
</tr>
<tr>
<td>sasae 支え</td>
<td>supporting deverbal</td>
<td>deverbal noun</td>
<td>3</td>
<td>.667</td>
</tr>
<tr>
<td>susumi 進み</td>
<td>proceeding deverbal</td>
<td>deverbal noun</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>susuri 嘦り</td>
<td>sipping, slurping, sucking deverbal</td>
<td>deverbal noun</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>seseri 挑り</td>
<td>picking at deverbal</td>
<td>deverbal noun</td>
<td>9</td>
<td>.556</td>
</tr>
<tr>
<td>\textbf{ALL DEVERBAL NOUNS}</td>
<td></td>
<td></td>
<td>14</td>
<td>.500</td>
</tr>
<tr>
<td>\textbf{ALL NON-VERBS}</td>
<td></td>
<td></td>
<td>63</td>
<td>.520</td>
</tr>
<tr>
<td>sasaeru 支える</td>
<td>support verb</td>
<td>verb</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>sasaru 刺さる</td>
<td>embed itself verb</td>
<td>verb</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>susumu 進む</td>
<td>proceed verb</td>
<td>verb</td>
<td>6</td>
<td>.000</td>
</tr>
<tr>
<td>susumeru 動める</td>
<td>recommend verb</td>
<td>verb</td>
<td>1</td>
<td>.000</td>
</tr>
<tr>
<td>susumeru 進める</td>
<td>advance, promote verb</td>
<td>verb</td>
<td>2</td>
<td>.000</td>
</tr>
<tr>
<td>\textbf{ALL VERBS}</td>
<td></td>
<td></td>
<td>11</td>
<td>.000</td>
</tr>
<tr>
<td>\textbf{TOTAL}</td>
<td></td>
<td></td>
<td>74</td>
<td>.443</td>
</tr>
</tbody>
</table>

Although the MRRs for non-verbs and verbs of .520 and .000, respectively, are both lower than the comparable standard MRRs of .768 and .184, respectively, the number of compounds involved is too small to come to a conclusion that holds any statistical significance. The putative rule in (8) is manifestly false: it is not the case that rendaku ‘is blocked’. Not only does rendaku overwhelmingly applicable to ‘two identical \(s \)-type moras’. See Kiyose (1985), Martin (1987: 10–13) or Frellesvig (2010: 201–210) for historical detail.

\(^7\) Different polysemes are counted as independent \(E_2 \). See Irwin (2012).
occur in *sasa*, as pointed out by Labrune, with a higher than average MRR of .950, it also occurs in the now obsolete *sisi* and *babaki*, as well as in the two deverbals *sasae* and *seseri*. The only two E₂ to occur in compounds more than 10 times in the database, *sasa* and *susuki*, either overwhelming favour or disfavour rendaku. Of the 74 compounds in Table 1, only 22 (29.7%) appear in both rendaku database dictionaries and are thus definable, to any extent, as ‘frequent’. Of these, the non-verbs have an MRR of .574 (17/22), slightly higher than the overall non-verb MRR of .520 in Table 1.

If we examine the two fricatives *s* and *h* separately, *s* non-verbs exhibit an MRR of .571, while the MRR for *h* non-verbs is .107. The MRR for *s* non-verbs is thus lower than the standard MRR of .768. While, at .107, the comparable figure for *h* is very low, there are only 7 examples, all of whose E₂ are highly marked. The most that can be said about an E₂ beginning in two identical voiceless fricative moras is that there is—at a push—a very weak tendency for those beginning in *s* to resist rendaku, but that there exist insufficient examples for those beginning in *h* to provide any significant statistical corroboration. The rule stated in (8) must be rejected.

4. Heteromorphemic moras

The first claim regarding rendaku and heteromorphemic duplicate moras was also put forward by Satō:

[Rendaku frequently does not occur where two identical, or similar, sounds would occur in succession.]

Satō (1989: 255)

He then cites, as example compounds with ‘identical sounds’, *kizu+tukeru* ‘scar, wound’, as opposed to *ato+zukeru* ‘follow up’, *iti+zukeru* ‘rank’ and *na+zukeru* ‘name’, where E₂ is *tukeru* ~ *zukeru* 付ける ‘attach’; as well as *tobi+bi* ‘flying sparks’, as against *taki+bi* ‘bonfire’, *kitune+bi* ‘will-o’-the-wisp’, *nokori+bi* ‘ember’ and *morai+bi* ‘catching fire’, where E₂ is *bi ~ bi* 火 ‘fire’. The rendaku forms *kizu+zukeru* and *tobi+bi* are blocked, according to Satō, since the duplicate ‘identical sounds’ *zu* and *bi* would result. As example compounds with ‘similar sounds’, Satō cites *siage+kan*na ‘smoothing plane’ as opposed to *dai+ga*nna ‘block plane’, *yari+ga*nna ‘tipped plane’ and *tuki+ga*nna ‘Western-style plane’, where E₂ is *kan*na ~ *ga*nna 飽 ‘plane’. Here, the rendaku form *siage+ga*nna is blocked, he contends, due to the fact that the duplicate ‘similar sounds’ *ge* and *ga* (i.e. mora-initial *g*) would result.

M. Takayama (1992: 116), quoting Satō (1989), makes the same claim, though for ‘identical sounds (同音)’ only. Later, in M. Takayama (2012: 109–110), he reaffirms his position on ‘identical sounds’, although this time more circumspectly. Citing it as a classic example of haplology, he also lists a number of exceptions, including *yobi+bi* ‘alternative date (for an event)’ and *soba+batake* ‘field of buckwheat’.

Labrune (1999: 125) repeats Satō’s (1989) claim regarding both ‘identical’ and ‘similar’ sounds, quoting his *bi ~ bi* ‘fire’ examples verbatim, though using the word ‘segment’ rather than ‘sound’. She repeats both claims once more in Labrune (2006: 123–124), this time citing both his *bi ~ bi* ‘fire’ and *tukeru ~ zukeru* ‘make, attach’ examples verbatim and, in place of ‘sound’, using ‘élément phonologique qui peut être soit une mora, soit un segment [phonological element, be it a mora or a segment]’. Finally, she repeats both Satō’s claims a third time in Labrune (2012: 8 See footnote 6.
120–121), essentially an English translation of Labrune (2006: 123–124), citing Sato’s bi ~ bi ‘fire’ and tukeru ~ zukeru ‘make, attach’ examples verbatim yet again and this time writing ‘phonological element, which can be either a mora or a segment’ for Sato’s ‘sound’. In both Labrune (2006) and (2012) she also quotes a single exception to Sato’s claim: tabi+bito ‘wayfarer’.

From his examples (and also reflected in M. Takayama (1992, 2012) and Labrune (2006, 2012)), it is clear that what Sato means by ‘identical sound’ is in fact ‘identical mora’, while by ‘similar sound’ he means ‘mora beginning with an identical initial’. When possible rendaku candidate moras are taken into consideration, Sato’s claim can be reworded as:

(9) Rendaku is frequently avoided when two duplicate moras, or two moras beginning with the same voiced obstruent (e.g. …da+do…), would occur across an element boundary.9

Once again, neither Sato (1989), M. Takayama (1992, 2012) nor Labrune (1999, 2006, 2012) cite any statistical evidence whatsoever to corroborate the claim in (9). Before examining this evidence in detail, however, it is worth considering the data for E1-final moras in general. This is shown in Fig. 4 for the 25,001 database non-verb compounds.10 Here, E1-final moras are categorized in two different ways: by mora-initial consonant (V = no initial consonant; N = mora nasal) and by mora-final vowel. The former are shown in bold. Two separate one-way ANOVA tests were run, one by mora-initial consonant and one by mora-final vowel. In both cases, there were no statistically significant differences between group means (mora-initial consonant test: \(F(15,16) = 1.411, p = .25 \); mora-final vowel test: \(F(5,6) = 0.914, p = .53 \)). In other words, it cannot be argued in the analyses to follow that a particular E1-final mora is exerting an influence.

![Figure 4](data.png)

Figure 4 Database Mean Rendaku Rates for non-verb E1-final moras (data from Irwin & Miyashita 2013)

9 When di, du are treated as zi, zu.

10 The single E1-final tse-mora, problematic under a conservative phonemicization, is treated as a t-mora.
I turn first to the strong version of the claim, i.e. that the two moras straddling the element boundary are identical. As with the tautomorphemic analysis above, non-verb and verb data are examined separately. Data for the non-verb strong claim is thin on the ground, with only 89 compounds (a scant 0.4% of all non-verb database compounds) possessing a potential rendaku site for a duplicate heteromorphemic mora. These are spread across 14 different E₁-final moras and shown in Fig. 5 (there are no relevant E₁-final be, de, ge or ze moras). If the strong version of the claim in (9) were true, these moras should all show severely depressed MRRs. This is clearly not the case. Exactly half the E₁-final moras exhibit an MRR higher than the non-verb MRR of .768, although in many cases n is small. Overall, the average MRR for non-verb database compounds possessing a potential rendaku site for a duplicate heteromorphemic mora is .567, which although somewhat dampened, can by no means be construed as statistically representative of a situation where rendaku is ‘frequently avoided.’

Figure 5 Mean Rendaku Rates for non-verb database compounds possessing a potential rendaku site for a duplicate heteromorphemic mora (data from Irwin & Miyashita 2013)

Data for the strong claim for verbs are necessarily even thinner, with only six candidates in the entire database:¹¹ two exhibiting rendaku (mizu+zuku ‘soak’ and suga+gaku ‘perform on the wagon (a stringed instrument)’, both now obsolete) and four not (kizu+tukeru ‘scar, wound’ as cited by Saitō, its intransitive companion kizu+tuku ‘be scarred, wounded’, guzu+tuku ‘dawdle’, and the obsolete roozi+simu ‘occupy, possess’). Although this yields an overall verb MRR of .200 (on a close par with the standard MRR for verbs of .184), the data are insufficient for any meaningful conclusions to be drawn.

¹¹This even with an extremely conservative approach, which allows E₁-final zu and zi two voiceless E₂-initial counterparts each: su, tu and si, ti, respectively.
Turning now to the weak version of the claim in (9), that the two moras straddling the element boundary begin only with the same obstruent, the volume of data is considerably larger: some 425 non-verb compounds (1.7% of all non-verb database compounds) possess a potential rendaku site. These are spread across all the possible 18 different E₁-final moras and shown in Fig. 6. As with its strong version, if the weak version of the claim in (9) were true, these moras should show severely depressed MRRs. Once again, as with the strong version, this is clearly not the case: in fact, even less so. Although only three E₁-final moras have an MRR higher than the non-verb MRR of .768, the average MRR here is .652, scarcely one point below the non-verb MRR. The weak version of the claim in (9) holds no water whatsoever and must be rejected.¹²

\[\text{Figure 6 Mean Rendaku Rates for non-verb database compounds possessing a potential rendaku site for a duplicate mora beginning in the same voiced obstruent (data from Irwin & Miyashita 2013)} \]

As with the strong version of (9), with the weak version also data for verbs is extremely limited. There are only 58 such rendaku candidate compounds (just 2% of all verb database compounds)¹³ and together they show a MRR of .129, a little lower than the verb standard MRR of .184. Here, then, rendaku is indeed ‘frequently avoided’ although, as we have seen in Fig. 1, for verbs this is generally the case anyway. Once again, however, the data are insufficient for

¹² Although not mentioned in (9) and, to my knowledge not advocated by Satō, M. Takayama, Labrune or anyone else, a corollary of the heteromorphemic mora claim is that an E₁ ending in a voiceless mora should be more likely to undergo rendaku, in order to avoid two identical moras (the ‘strong corollary’) or two moras beginning with the same voiced obstruent (the ‘weak corollary’). An analysis of the database, for non-verbs only, shows that the MRRs for applicable compounds are only slightly elevated: the MRR is .812 for the strong corollary \((n = 190)\) and a near identical .814 for the weak corollary \((n = 1643)\).

¹³ As with the corresponding strong claim, I adopt an extremely conservative approach and permit E₁-final zu and zi moras both \(s\) and \(t\) voiceless E₂-initial moras.
any meaningful conclusions to be drawn.

5. Discussion
As M. Takayama (2012: 110) states, it is likely Satō’s (1989) claim in (9) for duplicate heteromorphemic moras was motivated by an appeal to haplology or, as Labrune (2012: 120) puts it, a ‘dissimilatory principle’. The same may be said for the claim in (8), although why it should be restricted to fricatives is unclear. Motoori-Lyman’s Law, the most important of the major rendaku restricting factors in (3) is also a process of dissimilation, albeit tautomorphemic. Ramsey & Unger (1972: 287–289), however, proposed a more strongly dissimilatory—because heteromorphemic—‘strong clause revision’ of the Law, under which rendaku is blocked when \(E_1 \) contains a voiced obstruent.\(^{14}\) This strong version of the Law appears to have been a reality in Old Japanese (OJ), if \(E_1 \) are restricted to nouns of 2 moras or less, which accounts for the vast bulk of attested compounds (Vance 2005b: 28–33; Vance & Irwin 2012, 2013).\(^{15}\) However, this strong version has since broken down: and as early as the 17th century, according to the MRR\(^{16}\) garnered by Toda (1988: 87) from the Japanese-Portuguese dictionary \textit{Nippō Jisho}, published in 1603. Compounds such as \textit{nodo+botoke} ’Adam’s apple’, \textit{rezì+bukuro} ’supermarket checkout bag’ or \textit{yubi+zumoo} ’thumb wrestling’ are rife in the modern language. Satō’s (1989) claim in (9) may thus be regarded as a restricted variant of Ramsey & Unger’s (1972) ‘strong clause revision’, although purporting to still apply in Modern Japanese (ModJ): restricted to the \(E_1 \)-final mora—though, since no OJ morpheme could begin in a voiced obstruent, it is tantamount to Vance’s (2005b) \textit{de facto} restriction—and restricted yet further to either completely identical or initial-identical moras. For a schematization of these dissimilatory processes, see Fig. 7. Here, the \(y \)-axis indicates time, while bold moras indicate the object of the dissimilatory process in question.

Kawahara & Sano (2013), in an experiment employing nonce words, claim that rendaku is observed less often (and to a statistically significant extent) when it results in adjacent but heteromorphemic identical CV moras. Rendaku blockage due to what they term ‘identity avoidance’ would appear to corroborate the putative rule in (9) and thus offer counter-evidence for one of the central claims of this paper. Indeed, in the history of rendaku research, this would not be the first time apparent psychological reality has not squared with the statistical facts: see Vance (1979, 1980b) for the case of Motoori-Lyman’s Law.\(^{17}\)

Another claim similar to that in (9) was made by Sugitō (1965), though severely restricted to a miniscule proportion of vocabulary: surnames ending in \(-ta\), written \(ñ\). Her analysis showed that the \(ta \) morpheme underwent rendaku only 35\% of the time when the \(E_1 \)-final mora contained a voiced obstruent, a liquid or a semi-vowel; and that the same \(ta \) morpheme underwent

\(^{14}\) Later, as pointed out by Vance (in press), Unger (1975: 9) credits this to Ishizuka (1801). See also Miyake (1932: 136).
\(^{15}\) Miller (1984) proposed an even stronger version of the Law in which rendaku was blocked in OJ when the initial element in a compound contained any voiced consonant, whether obstruent or sonorant. See Vance & Irwin (2012, 2013) for a refutation.
\(^{16}\) Toda’s MRR for compounds listed in the \textit{Nippō Jisho} whose \(E_1 \) ended in a voiced obstruent was .480 (\(n = 368 \)).
\(^{17}\) Kawahara & Sano (2013) conducted their survey online and thus this author awaits data replicated by more rigorously controlled experiments. Further, many of their nonce words were not readily interpretable as native stratum nouns, but as either verbs (with expected low MRRs—see Fig. 1) or as compounds (expected to conform to the right branching condition—see (3)).
rendaku 98% of the time when the E₁-final mora contained a voiceless obstruent or a nasal.¹⁸
Similar analyses by Hirata (2010, 2011) produced more nuanced, though broadly similar, results
to Sugitō’s earlier findings. Zamma (2005) found that comparable tendencies were apparent
for other (but by no means all) common surname-final morphemes such as -sawa 河/澤, -sima 島/島, -tuka 坂 and -saki 崎.

That said, the analyses in §3 and §4 have demonstrated conclusively that any putative influ-
ence exerted by duplicate moras in the direction of restricting rendaku must be rejected. This
conclusion has been drawn from statistical analyses of empirical data: it is most unfortunate that
neither Satō in his original claims in (8) and (9), nor M. Takayama and Labrune in their sub-
sequent restatements of these claims, chose to collate sufficient data to corroborate their asser-

¹⁸Accent patterns also played a role. Ohta (2013) concludes that only accent, and not the E₁-final mora,
plays a role in the rendaku patterns found in E₂ kawa ‘river’, when restricted to river names.

Figure 7 Dissimilatory processes proposed for Japanese compounds
It is to be hoped that, unlike the Eskimo-words-for-snow 'hoax' (Cichocki & Kilarski 2010; Krupnik & Müller-Willer 2010), a rendaku-blocked-by-duplicate-mora 'hoax' will now cease to perpetuate itself in the literature, and die a swift and well-warranted death.

References

\[Labrune (2012: 121)\] does concede, however, that a ‘thorough statistical analysis is called for’.

同一モーラの連続における連濁

アーヴィン マーク
山形大学／国立国語研究所 共同研究員

要旨
同一モーラが二つ連続する場合の連濁に関して、先行研究には次のような二つの主張が根強くある。「カレ+ズスキ（枯れ薄）」のように同一の摩擦音モーラが二つ同形態素で連続する場合、連濁は起こらないとされている。さらに、もし連濁が起こるとしても。「キズ+ツケル（傷つける）」のように二つの同一モーラが異なる形態素にまたがって連続する場合は、連濁は非常に起こりにくいと主張されている。とはいえ、いずれの主張も統計的な証拠によっては一応も確認されておらず、「言語学的都市伝説」と見なさざるを得ない。この論文では、連濁データベースに基づいた統計的分析を通じて、先行研究における「連続するモーラ」に関する主張への裏付けは極めて貧弱で、放棄すべきであると論じる。

キーワード：連濁、モーラ、異化、連濁データベース、言語学的都市伝説