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Abstract
The current study examined how speaking rate affects phonetic implementation of phonological 
voicing contrast in word-initial stops, focusing on temporal properties such as voice-onset time 
(VOT), closure duration and vowel duration.
    A pilot study of a Russian speaker showed that, the effect of speaking rate on VOT of voiced 
stops (negative VOT) is greater than that of voiceless stops (positive short-lag VOT), replicating 
previous studies. The results further revealed that (i) regardless of voicing specification, closure 
and vowel duration symmetrically decreases as speaking rate increases; (ii) the VOT/ vowel ratio 
and VOT/ closure ratio are roughly stable across speaking rates; (iii) rate-dependent change in 
negative VOT is predictable from the systematic change in closure duration.*
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1.  Introduction
Phonology affects speech production to implement linguistic contrasts. At the same time, pho-
netic properties of speech sounds are highly variable as a function of other factors, such as speak-
ing style (e.g., Smiljanić and Bradlow 2005, Maniwa et al. 2009, Igarashi et al. 2013), prosodic 
structure (e.g., Cho 2005, Cole et al. 2007, Mori et al. 2014, Erickson and Kawahara 2016), 
focus (e.g., De Jong and Zawaydeh 2002, De Jong 2004, Silbert and De Jong 2008), speaking 
rate (e.g., Summerfield 1981, Hirata 2004, Hirata and Whiton 2005) and so on. These studies 
have revealed that some phonetic properties are modified as a function of contextual factors,1 
while others remain stable. In other words, some properties show a context-dependent pattern, 
while others show a context-independent pattern. Context-dependent phonetic patterns can 
potentially be troublesome for language learners including children, since they must learn how to 
control articulators and how to perceive linguistic signals in a context-dependent manner.

Context-dependent phonetic patterns are troublesome not only for language learners but also 
for linguistic models of speech production and perception. In earlier models of phonetic imple-
mentation, it was hypothesized that detailed phonetic information, including context-dependent 
differences in the physical world, is abstracted away (Chomsky and Halle 1968, Pierrehumbert 
1980, Keating 1990, see also Studdert-Kennedy 1976 for speech perception). In contrast, the 

* I would like to thank the participant for her cooperation in the production experiment. I am grateful to 
the audience at NINJAL salon ( June 2016) and the reviewer for feedback on this paper. I also wish to thank 
Sayaka Goto, Hyun Kyung Hwang, and Jaye Padgett for their insightful comments. Many thanks are also 
due to Donna Erickson for valuable input and proofreading. All remaining errors are my own.
1 The term “context” here implies the context in a broader sense, including positional, segmental, pragmatic, 
prosodic and temporal contexts.
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growing body of literature has shown that listeners retain context-dependent acoustic proper-
ties (e.g., Goldinger 1996, 1998), and that phonetic details play a role in speech processing (e.g., 
Hawkins and Nguyen 2003). How to integrate context-dependent patterns (particularly, “physi-
cal” timing patterns) into phonology is an ongoing theoretical debate (Port and Leary 2005: 
931). Thus, interactions between contextual effects and phonetic implementation of phonological 
contrasts are still not well-known, and much remains to be learned. This paper addresses this 
general issue, with particular interest in the effects of speaking rate on voicing contrasts in stops. 
As will be discussed below, the effects of speaking rate interact with voicing contrasts in interest-
ing ways.

Many languages, including Japanese, English, and Russian, have so-called voicing contrasts 
in phonology. Phonological contrast of voicing in stop consonants is typically described in 
terms of voice-onset time in many languages (Lisker and Abramson 1964). Voice-onset time 
(henceforth, VOT) refers to a time interval between two temporal events, that is, the release of 
oral closure (the reference point) and the onset of the vocal fold vibration. That is to say, a nega-
tive VOT implies that vocal fold vibration begins before the oral closure is released. Likewise, a 
positive VOT implies that vocal fold vibration begins after the oral closure is released. Also, the 
magnitude of VOT gives us insights about how much the glottal and oral gestures overlap or lag. 
According to Lisker and Abramson (1964), cross-linguistic variations of phonetic implementa-
tion of phonological voicing contrasts generally fall into three VOT categories: negative VOT, 
positive short-lag VOT, and positive long-lag VOT.

While VOT is known to be associated with phonological contrasts of voicing in stop con-
sonants, it is also affected by various other factors, such as place of articulation (e.g., Cho and 
Ladefoged 1999), prosody (Cho 2005, Cole et al. 2007), speaking rate (e.g., Summerfield 1981, 
Miller et al. 1986, Kessinger and Blumstein 1997, Magloire and Green 1999), and so on. Since 
VOT is defined by glottal and oral temporal events, a fundamental question in phonetics is how 
this inter-gestural timing is affected by a systematic change in global temporal properties, namely,  
speaking rate. At the same time, an important question in phonology is how such contextual 
effects interact with phonological voicing contrasts. Thus, the purpose of the current study is to 
examine the effect of speaking rate on temporal implementation of voicing contrasts. The follow-
ing section provides a background of the effect of speaking rate on voicing contrasts. Section 3 
describes methodology. Section 4 presents the pilot acoustic study. Section 5 discusses the results 
of the pilot study, with some interim remarks.

2.  Background
A number of studies have addressed the effect of speaking rate on VOT in a series of languages 
such as English (Summerfield 1981, Miller et al. 1986, Miller and Volaitis 1989, Kessinger 
and Blumstein 1997), Icelandic (Pind 1995), French (Kessinger and Blumstein 1997), Thai 
(Kessinger and Blumstein 1997), Spanish (Kessinger and Blumstein 1997, Magloire and Green 
1999), Catalan (Solé and Estebas 2000), Swedish (Beckman et al. 2011), and Russian (Kulikov 
2012, Matsui 2012). These studies demonstrated that not all VOTs are equally affected by speak-
ing rate. For example, Summerfield (1981) observed that the VOTs of English voiceless stops 
(positive long-lag VOT) greatly change as a function of speaking rate, while those of voiced 
stops (positive short-lag VOT) were roughly stable across speaking rates.

Later cross-linguistic studies have revealed that the absolute value of VOT increases as the 
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speaking rate slows, although such rate effects are robust for positive long-lag and negative VOTs 
while short-lag VOTs were minimally affected (e.g., Kessinger and Blumstein 1997 for English, 
Thai, and French; Pind 1995 for Icelandic; Magloire and Green 1999 for English and Spanish; 
and Kulikov 2012 and Matsui 2012 for Russian).

While rate effects on VOT have received considerable attention for decades, what is still not 
clear is the relationship between VOT and the other temporal patterns in stops. For example, 
closure duration of voiceless stops is usually longer than that of voiced stops (cf. Kingston and 
Diehl 1994), but is it symmetrically affected by speaking rate? Considering the fact that, by 
definition, the possible range of negative VOT is constrained by the closure duration of the stop 
as schematized in Figure 1, it may be the case that closure duration is affected by speaking rate, 
resulting in a change in negative VOT.

Figure 1. � Schematic representation of the relationship between 
closure duration and negative VOT

Other than closure duration, Kessinger and Blumstein (1998) note a relationship between 
the vowel following word-initial voiceless stops (positive long-lag VOT) in English. They found 
that, as speaking rate increases, vowel duration also increases. They also revealed that the ratios 
between (positive long-lag) VOT and the following vowels are constant across speaking rates. 
However, Kessinger and Blumstein (1998) only tested the vowel following the voiceless stop 
having long-lag VOT. Therefore, it is not clear (i) whether the pattern is applicable to nega-
tive VOT and positive short-lag VOT, and (ii) whether voicing of the stop affects the follow-
ing vowel duration. Thus, systematic analysis for both pairs of contrastive stops is needed. To 
summarize, while cumulative evidence suggests that short-lag VOT is cross-linguistically stable 
across speaking rates, the relation between VOT and other related acoustic properties at different 
speaking rates is understudied.

The current paper presents a pilot acoustic study of the effect of speaking rate on VOT, clo-
sure duration, and vowel duration in Russian. Russian is one of the languages that have a two-
way voicing contrast. A previous acoustic study reports that over 97% of Russian so-called voiced 
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stops have negative VOT, while so-called voiceless stops are realized with positive short-lag VOT 
(Ringen and Kulikov 2012). Considering previous studies of the rate effects on Russian VOT 
(Kulikov 2012, Matsui 2012) and cross-linguistic findings (e.g., Kessinger and Blumstein 1997), 
it would be predicted that in Russian the effects of speaking rate on VOT would be greater in 
voiced stops than in voiceless stops. In the current study, the results of the previous studies on 
VOT are replicated in a new dataset. Then, the effects of speaking rate on closure duration and 
vowel duration are examined. Finally, the relation between VOT and the other temporal proper-
ties are addressed. To the best of my knowledge, this is the first report on the effects of speaking 
rate on closure and vowel duration flanked by negative VOT or positive short-lag VOT. In the 
following sections, phonological transcriptions are given along with the latest IPA transcriptions 
of Russian (Yanushevskaya and Bunčić 2015).

3.  Methods
3.1  Participant
The participant was a female native speaker of Russian (42 years old, from St. Petersburg) with 
no known history of speech and hearing disorders.

3.2  Speech materials
Speech materials consisted of three lexical (near-) minimal pairs contrasting voiced and voiceless 
bilabial non-palatalized stops (/p/, /b/) in word-initial position. The vowels following the initial 
target stops were either /a/, /o/, or /u/.

Table 1.  Target words

Voiceless Voiced

/par/ 
“steam”

/bar/ 
“bar”

/pot/ 
“swear”

/bot/ 
“boat”

/pusk/ 
“starting”

/buk/ 
“beech”

Each target word was embedded in a carrier sentence such as /skaʒi poʒalujsta, [target word], 
jeʃ jʃ je raz/ (‘Please say [target word] once again’).

3.3  Procedures
The recording was conducted in a quiet room at the National Institute for Japanese Language 
and Linguistics. Speech materials were presented to the speaker in the Russian Cyrillic alphabet. 
Basic procedures followed Magnitude production procedure (Miller et al. 1986). The speaker read 
each sentence in four conditions: in the first condition, the speaker was asked to read the sen-
tence at her comfortable, normal tempo; in the second condition, she was asked to read the same 
sentence twice as fast as her previous reading; in the third condition, she was again asked to read 
it at a normal tempo; finally, in the fourth condition, she was asked to read it at half the tempo 
of her previous reading. The second, the third, and the fourth conditions were defined as “Fast”, 
“Middle”, “Slow”, respectively. Each speech material was recorded five times in a random order.
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3.4  Recording settings
Simultaneous audio and video inputs were recorded directly onto a Macintosh computer. Audio 
inputs were recorded via USB audio interface (Roland, UA-33) with a mono microphone (AKG, 
C520) at a 44.1-kHz sampling rate and 16-bit quantization level. Video inputs were recorded via 
an external webcam (Buffalo, BSWHD06M). These audio and video signals were stored together 
as a container format (.mov), from which an audio file (in a .wav format) was extracted for acous-
tic analyses.

3.5  Measurements
The utterances produced in Fast, Middle, and Slow conditions were annotated using the Praat 
speech analysis software (Boersma and Weenink 2010).2 The focus of the current study is on (i) 
voice-onset time, (ii) closure duration, and (iii) vowel duration.

VOT was measured from the onset of the release burst (reflecting the onset of oral release) 
to the onset of quasi-periodic energy (reflecting the onset of vocal fold vibration). Closure dura-
tion was measured from the offset of the preceding phrase to the onset of the release burst. If a 
noticeable pause was inserted before the word-initial stop, such tokens were excluded from anal-
ysis. For vowel duration, the onset of the vowel was identified as the onset of the quasi-periodic 
wave occurring shortly after the stop burst. The offset of the vowel was identified based on an 
abrupt change in amplitude and the shape of the waveform. Sample waveforms and spectrograms 
are shown on Figures 2a and 2b.

Figure 2a. � Sample waveform and spectrogram of a voiced stop (/bar/, 
Middle condition)

2	 Video data were supplementarily used to double-check the closure timing of the lips.
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In addition to these measurements, Consonant + Vowel (CV) duration of the target word (cf. 
Kessinger and Blumstein 1998) and the number of syllables per second were also considered as 
metrics of speaking rate. Following Kessinger and Blumstein (1998), CV duration was measured 
from oral release till the end of the following vowel.

An assumption here is that if our speaker manipulated her speaking rate successfully, CV 
duration should change as a function of speaking rate; that is, as speaking rate increases, CV 
duration should be shorter. More specifically, it is expected that if the rate manipulation was suc-
cessful, CV durations at Slow, Middle, and Fast conditions would be: Fast < Middle < Slow.

As a reference, Figure 3 shows the mean CV duration in Slow, Middle, and Fast conditions. 
A two-way (rate condition × voicing specification of the stops) repeated measures Analysis of 
Variance (ANOVA) confirmed that there is a significant effect of speaking rate on CV duration 
[F (2)= 41.702, p < 0.001]. No interactions between speaking rate and voicing were significant 
[F (2)= 0.006, p = 0.994]. The three conditions were significantly different from each other 
[Tukey HSD for multiple comparison, Slow vs. Middle: p < 0.001; Middle vs. Fast : p < 0.001; 
Fast vs. Slow: p < 0.001]. In summary, as speaking rate increases, CV duration symmetrically 
decreases, regardless of voicing specification of word-initial stops. From these observations, it was 
confirmed that our speaker controlled the three speaking rates successfully.3

3	 This pattern was also confirmed with a traditional metric of speaking rate, such as number of syllables per 
second: as speaking rate increases, the number of syllables/sec increased. Since the patterns were consistent, 
and because of space limitations, only CV duration was considered in this paper.

Figure 2b. � Sample waveform and spectrogram of a voiceless stop (/par/, 
Middle condition)
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3.6  Dataset
The total number of obtained tokens was 90 (6 sentences × 5 repetitions × 3 conditions). Out 
of 90, nine tokens were excluded due to undetectable release burst (N=1), presence of unnatural 
pause during an utterance (N=3), and discontinued voicing (N=5), where VOT could not be cal-
culated since vocal fold vibrations would stop and start again during closure. The remaining 81 
tokens were considered for further analyses.

4.  Results
The results are divided into two parts. First, the effects of speaking rate on VOT, closure dura-
tion, and vowel duration are examined separately (section 4.1). Second, the relation between 
VOT and other measurements was investigated (section 4.2).

4.1  The effect of speaking rate
4.1.1  Voice-onset time
Since speaking rate was successfully manipulated (see Figure 3 above), a prediction is that the 
effect of speaking rate on VOT for voiced stops (negative VOT) will be greater than that for 
voiceless stops (positive short-lag VOT).

Figure 4 illustrates VOT as a function of CV duration. As is evident from Figure 4, the 
majority of voiced stops have negative VOT, whereas the majority of voiceless stops have posi-
tive short-lag VOT. This pattern is consistent with previous studies on VOT in Russian (Ringen 
and Kulikov 2012, Kulikov 2012). Moreover, importantly, even though the speaking rate was 
manipulated, there is almost no distributional overlap between voiced and voiceless stops along 
the continuum of VOT, which was also noted in the author’s previous study with another dataset 
(Matsui 2012).

Figure 3. � Mean CV duration broken down by rate condition. Error bars represent 
one standard deviation
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In order to further estimate the linear functions relating VOT with CV duration in both 
voiced and voiceless stops, a two-way Analysis of Covariance (ANCOVA) was run with VOT as 
a dependent variable. The predictors of VOT were CV duration (continuous variable) and voic-
ing specification of stop (categorical variable). Before submitting the values to statistical analyses, 
outliers (N=3) were manually excluded. Moreover, in order to directly compare the difference in 
magnitude of the regression slopes, VOT values were converted into absolute values, as shown in 
Figure 5.

The results of the ANCOVA showed that there was a significant interaction between CV 
duration and voicing specification [F (1) = 13.72, p < 0.001]. Therefore, linear functions relat-
ing VOT with CV duration were estimated for voiced stops and voiceless stops separately. 
The ordinary least-square (OLS) regression analyses indicated that the regression slopes were 
significantly greater than zero for both voiced stops [t (33) = 5.393, p < 0.001; Adjusted R2 = 
0.4524, p < 0.001] and voiceless stops [t (41) = 2.866, p < 0.001; Adjusted R2 = 0.1466, p < 0.01]. 
Importantly, estimated slope (β) for voiced stops (β = 0.28526) was approximately four times 
greater than that for voiceless stops (β = 0.07747).

Figure 4. � Voice-onset time as a function of CV duration (N=81). Vertical line repre-
sents the speaker’s grand mean of CV duration (207 ms)
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4.1.2  Closure duration
Figure 6 illustrates closure duration as a function of CV duration. In order to examine the rate-
related change in closure duration, a two-way ANCOVA was again conducted with closure dura-
tion as a dependent variable. The predictors were CV duration and voicing specification of the stop.

The results showed that the effect of CV duration on closure duration was significant [F (1) = 
63.633, p < 0.001]. The effect of voicing specification was also significant [F (1) = 7.078, p < 0.01]. 
There was no significant interaction between the two predictors [F (1) = 0.000, p = 0.99400], 
suggesting that voiced and voiceless slopes may be similar to each other.

The OLS regression analyses indicated that, as can be seen in Figure 6, both slopes were sig-
nificantly greater than zero for both voiced stops [t (36) = 4.899, p < 0.001; Adjusted R2 = 0.3833, 
p < 0.001] and voiceless stops [t (41) = 6.172, p < 0.001; Adjusted R2 = 0.469, p < 0.001]. The 
results further exhibited that in accordance with the results of the ANCOVA mentioned above, 
voiced and voiceless stops have highly similar slopes (β): β = 0.24579 for the voiced slope and β 

Figure 5. � Voice-onset time (absolute value) as a function of CV duration (N=78). Intercepts are 
centered to the speaker’s grand mean of CV duration (vertical line, 207 ms)
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= 0.2463 for the voiceless slope. It should be noted that the centered intercept of voiceless stops 
[130 ms, t (41) = 41.303, p < 0.001] was 14 ms greater than for voiced stops [116 ms, t (36) = 
28.391, p < 0.001]. Taken together, this suggests that, while their distributions are different from 
each other, voiced stops and voiceless stops are symmetrically affected by speaking rate.

Figure 6. � Closure duration as a function of CV duration (N=81). Intercepts are cen-
tered to the speaker’s grand mean of CV duration (vertical line, 207 ms).

4.1.3  Vowel duration
Figure 7 illustrates vowel duration as a function of CV duration with regression lines. Again, a 
two-way ANCOVA was conducted with vowel duration as a dependent variable. The predictors 
of vowel duration were CV duration and voicing specification of the stop.



	 MATSUI Mayuki / NINJAL Research Papers 12: 47–62 (2017)	 57

Figure 7. � Vowel duration as a function of CV duration (N=81). Intercepts are centered 
to the speaker’s grand mean of CV duration (vertical line, 207 ms)

The results showed that the effect of CV duration on vowel duration was significant [F (1) = 
3495.704, p < 0.001]; as CV duration increases, vowel duration also increases. The effect of voic-
ing specification was also significant [F (1) = 115.792, p < 0.01]; vowels following voiced stops 
are longer than those following voiceless stops. There was no significant interaction between the 
two predictors [F (1) = 2.309, p = 0.133], suggesting that the magnitude of the effects should be 
consistent regardless of voicing specification. The OLS regression analyses confirmed that the 
estimated voiced slopes [β = 1.0, t (33) = 118.472, p < 0.001; Adjusted R2 = 0.9976, p < 0.001] 
are very similar to the voiceless slopes [β = 0.9, t (41) = 33.989, p < 0.001; Adjusted R2 = 0.9649, 
p < 0.05]. It should be noted that the centered intercept of voiced stops [204ms, t (38) = 169.77, 
p < 0.001] was greater than that of voiceless stops [177ms, t (41) = 83.27, p < 0.001], suggesting 
that vowels are longer after voiced stops than after voiceless stops.

In summary, as CV duration increases, vowel duration increases for both voiced and voiceless 
stops. The vowels following voiced stops and voiceless stops are symmetrically affected by speak-
ing rate.
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4.1.4  Summary
The results of VOT, closure duration, and vowel duration demonstrated that all these measure-
ments are affected by speaking rate: as speaking rate increases, VOT, closure duration, and vowel 
duration decrease. However, only for VOT, the magnitude of change in voiced stops (negative 
VOT) is significantly greater than that in voiceless stops (positive short-lag VOT), thus showing 
asymmetry.

4.2  The relationship between VOT and other temporal properties
In section 4.1, VOT, closure duration, and vowel duration were independently examined with 
CV duration as a mutual metric. This section takes a closer look at the relation between VOT 
and two other measurements.

Table 2 shows VOT/vowel ratios and Table 3 shows VOT/closure ratios at three rate condi-
tions. As can be seen in these tables, these ratios are fairly stable across rate conditions. VOT/
vowel ratio is 0.51–0.61 for voiced stops, and 0.15–0.20 for voiceless stops. VOT/closure ratio is 
roughly 1.0 for voiced stops and 0.22–0.24 for voiceless stops.

Table 2.  VOT/vowel ratio (N=78)
Rate condition Fast Middle Slow
Voiced
Mean VOT (absolute value) 83 126 139
Mean vowel duration (ms) 136 195 271
Ratio 0.61 0.65 0.51
Voiceless
Mean VOT (absolute value) 23 29 38
Mean vowel duration (ms) 119 173 247
Ratio 0.20 0.17 0.15

Table 3.  VOT/closure ratio (N=78)

Rate condition Fast Middle Slow

Voiced

Mean VOT (absolute value) 83 126 139

Mean closure duration (ms) 83 128 139

Ratio 1.00 0.99 1.00

Voiceless

Mean VOT (absolute value) 23 29 38

Mean closure duration (ms) 101 133 155

Ratio 0.23 0.22 0.24
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5.  Discussion
5.1  The effect of speaking rate on VOT, closure duration, and vowel duration
The results of VOT, closure duration, and vowel duration demonstrated that all these measure-
ments are affected by speaking rate. For VOT, however, the rate effect on voiced stops (negative 
VOT) is roughly four times greater than on voiceless stops (positive short-lag VOT), replicating 
the findings of previous studies of Russian (Kulikov 2012, Matsui 2012) and with other lan-
guages (e.g., Kessinger and Blumstein 1997).

For closure duration, as speaking rate increases, closure duration decreases. As discussed in 
section 2, the possible range of negative VOT is constrained by the closure duration of the stop. 
The current study demonstrated that, regardless of the voicing specification of stops, closure 
duration is symmetrically affected by speaking rate, suggesting that rate-dependent change of 
negative VOT is predictable from the change in closure duration.

For vowel duration, Kessinger and Blumstain (1998) reported that in English vowel dura-
tion following word-initial /p/ (positive long-lag VOT) decreased as speaking rate increased. The 
current study extended this observation to negative and positive short-lag VOTs, at least for one 
speaker.

Taken together, the results revealed that the rate effect is asymmetric only for VOT in that it 
interacts with the voicing specification of stops. The magnitude of change in voiced stops (nega-
tive VOT) is significantly greater than that in voiceless stops (positive short-lag VOT). On the 
other hand, closure duration and vowel duration are symmetric, not interacting with voicing 
specification of stops.

5.2  Constant relationship between VOT and other measurements
The results showed that both VOT/vowel ratios and VOT/closure ratios are fairly stable across 
rate conditions. Of particular interest is the nearly perfect one-to-one relationship between nega-
tive VOT and closure duration. The results showed that (i) the closure duration is affected by 
speaking rate and (ii) the (negative) VOT/closure ratio is always roughly 1.0 (Tables 2 and 3). 
This means that, for voiced stops, the speaker almost always starts voicing simultaneously with lip 
closure. Based on these observations, it is suggested that at a gestural level, the timing of glottal 
constriction for vocal fold vibration strictly aligns with the oral closure onset. For the short-lag 
stops, on the other hand, it may be the case that the timing of glottal constriction for vocal fold 
vibration aligns with the oral release onset (cf. Solé 2007: 310, see also Benguerel et al. 1978 for 
French positive short-lag VOT). Assessing these possibilities is a topic for future investigation.

As for the relationship between VOT and the duration of the following vowel, Kessinger 
and Blumstein (1998) noted that the ratios between (positive long-lag) VOT and the following 
vowel are constant across speaking rates in English. This pilot study demonstrated that, at least 
for one speaker of Russian, (i) the pattern is applicable to negative and positive short-lag VOTs 
as well, and (ii) interactions between voicing contrasts of stops and speaking rate do not affect 
vowel duration.

5.3  Future perspectives
As a pilot study, the current study provided data from a single speaker. In order to confirm 
whether the patterns obtained in this study can be generalized to a group of speakers, further 
follow-up studies are necessary.
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One possible direction for future studies is to discuss planned (controlled) vs. biomechani-
cal properties of speech production. In the traditional (but admittedly still standard) modular 
view of phonetic implementation, phonetics is viewed as a translation from phonological output, 
implying that after the phonological output is determined; the remaining part is in the realm 
of speech biomechanics. However, increasing evidence suggests that some detailed phonetic 
properties in the speech signal are controlled by the speaker of a given language, while others are 
not controlled; the latter properties are biomechanical and governed by universal phonetic con-
straints (Kingston and Diehl 1994, Solé 2007, for a review). In this branch of study, it is claimed 
that some detailed phonetic properties are specified as input to speech production at a certain 
stage after phonological output but prior to speech biomechanics. They are then adjusted as a 
function of contextual factors such as speaking rate in order to achieve the intended linguistic 
contrast; others, however, are not inputted to production but executed at biomechanical levels. 
This view assumes a certain level of “controlled” phonetics after phonological output but prior to 
speech biomechanics, which is contrary to the traditional view of phonetic implementation.

The asymmetry in Russian VOT can be interpreted as a consequence of controlled vs. biome-
chanical implementations of VOT. That is, the VOT of (Russian) voiced stops changes greatly as 
a function of speaking rate, since the manifestation of negative VOT for voiced stops is part of 
the input to production, in other words, contextually controlled by speakers (of Russian). On the 
other hand, VOT of (Russian) voiceless stops is only minimally affected, since the manifestation 
of positive short-lag VOT is biomechanical and not controlled by speakers.4 In order to further 
discuss the issues raised here, future studies should examine the effects of other contextual factors 
on VOT, such as the effect of prosodic boundary strength: if we assume that the manifestation of 
VOT of voiced stops is controlled at a certain stage after phonological output but prior to speech 
biomechanics inputted to production, VOT should also change as a function of other contextual 
factors.

In addition, in order to further examine the interactions between contextual factors and 
phonetic implementation of phonological contrasts, it would be insightful to directly compare 
languages with voicing contrasts to those without any voicing contrasts. To the best of my 
knowledge, previous studies have only examined languages with at least two or more phonologi-
cal voicing contrasts. Therefore, testing the pattern of a language with no voicing contrast may 
forward our understanding of asymmetric rate effects.
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発話速度と有声性対立に関わる時間特徴の間の相互作用： 
音響的側面の予備調査

松井真雪
国立国語研究所 研究系 理論･対照研究領域 プロジェクト研究員

要旨
本論文では，語頭閉鎖音の有声性の対立が発話速度の影響をどのように受けるのかを検討した。
特に，Voice-onset time（VOT），閉鎖の持続時間，後続母音の持続時間といった，時間的な特徴
の変動に焦点を当てた分析をおこなった。
ロシア語母語話者を対象とした小規模な予備調査から，以下の結果が得られた。まず，ロシア
語の有声閉鎖音の VOT（negative VOT）は，無声閉鎖音の VOT（positive short-lag VOT）よりも，
発話速度の影響を大きく受けることを示した。この結果は，先行研究の追試という位置づけにな
る。次に，新しい研究知見として，（i）有声性の音韻指定に関わらず，閉鎖音と後続母音の持続
時間は対称的に変動すること，（ii）VOTと母音時間の時間比率，VOTと閉鎖時間の時間比率は
発話速度を変えたとしてもおおよそ一定であること，（iii）Negative VOTの可変性は，閉鎖の持
続時間の変動から予測可能であること，以上の 3点を指摘した。

キーワード：有声性の対立，閉鎖音，発話速度，音声学と音韻論の関係論，ロシア語


